2.3 Water, Acids, and Bases

Lesson Objectives

  • Describe the distribution of Earth’s water.
  • Identify water’s structure and properties.
  • Define acids, bases, and pH.
  • Explain why water is essential for life.

WORKBOOK ASSIGNMENT

Chapter 2.3 workbook pages

Vocabulary

  • acid
    • solution with a pH lower than 7
  • base
    • solution with a pH higher than 7
  • hydrogen bond
    • type of chemical bond that forms between molecules: found between water molecules
  • pH
    • scale that is used to measure acidity
  • polarity
    • difference in electrical charge between different parts of the same molecule
  • solution
    • mixture that has the same composition throughout

Introduction

Water, like carbon, has a special role in living things. It is needed by all known forms of life. As you have seen, water is a simple molecule, containing just three atoms. Nonetheless, water’s structure gives it unique properties that help explain why it is vital to all living organisms.

Water, Water Everywhere

Water is a common chemical substance on planet Earth. In fact, Earth is sometimes called the “water planet” because almost 75% of its surface is covered with water. If you look at Figure below, you will see where Earth’s water is found. The term water generally refers to its liquid state, and water is a liquid over a wide range of temperatures on Earth. However, water also occurs on Earth as a solid (ice) and as a gas (water vapor).

distribution of water on earth

Most of the water on Earth consists of saltwater in the oceans. What percent of Earth’s water is freshwater? Where is most of the freshwater found?

Structure and Properties of Water

No doubt, you are already aware of some of the properties of water. For example, you probably know that water is tasteless and odorless (unless you are getting it from MY sink *blech*yuck ). You also probably know that water is transparent, which means that light can pass through it (uh, yeah, that’s obvious). This is important for organisms that live in the water, because some of them need sunlight to make food.

Chemical Structure of Water

To understand some of water’s properties, you need to know more about its chemical structure. As you have seen, each molecule of water consists of one atom of oxygen and two atoms of hydrogen. The oxygen atom in a water molecule attracts electrons more strongly than the hydrogen atoms do. As a result, the oxygen atom has a slightly negative charge, and the hydrogen atoms have a slightly positive charge. A difference in electrical charge between different parts of the same molecule is called polarity. The diagram in Figure below shows water’s polarity.

water molecule

Water Molecule. This diagram shows the positive and negative parts of a water molecule.

Opposites attract when it comes to charged molecules. In the case of water, the positive (hydrogen) end of one water molecule is attracted to the negative (oxygen) end of a nearby water molecule. Because of this attraction, weak bonds form between adjacent water molecules, as shown in Figure below. The type of bond that forms between molecules is called a hydrogen bond. Bonds between molecules are not as strong as bonds within molecules, but in water they are strong enough to hold together nearby molecules.

Watch this animated video about hydrogen bonding forces.

To view the video above: If possible, use the Chrome browser to access the link. When the page comes up, click on California. That will take you to the page where the video is, but it won’t load yet. Instead, it will show a puzzle piece icon that says “Click to enable Adobe Flash.” Once you click that a popup will come up at the top left of the browser. It will say “http://www.classzone.com wants to run Flash.” Click “Run.” The video should play.

water molecules

Hydrogen Bonding in Water Molecules. Hydrogen bonds form between nearby water molecules. How do you think this might affect water’s properties?

Properties of Water

Hydrogen bonds between water molecules explain some of water’s properties. For example, hydrogen bonds explain why water molecules tend to stick together. Did you ever watch water drip from a leaky faucet or from a melting icicle? If you did, then you know that water always falls in drops rather than as separate molecules. The dew drops in Figure below are another example of water molecules sticking together. This property of water makes it so that water can move upwards through plant stems, bringing water and nutrients to the tops of even the tallest plants.

water drops

Droplets of Dew. Drops of dew cling to a spider web in this picture. Can you think of other examples of water forming drops? (Hint: What happens when rain falls on a newly waxed car?)

Hydrogen bonds cause water to have a relatively high boiling point of 100°C (212°F). Because of its high boiling point, most water on Earth is in a liquid state rather than in a gaseous state. Water in its liquid state is needed by all living things. Hydrogen bonds also cause water to expand when it freezes. This, in turn, causes ice to have a lower density (mass/volume) than liquid water. The lower density of ice means that it floats on water. For example, in cold climates, ice floats on top of the water in lakes. This allows lake animals such as fish to survive the winter by staying in the water under the ice. Hey, just another “cool” thing (har har) that God did to take care of our fishy friends!

Acids and Bases

Water is the main ingredient of many solutions. A solution is a mixture of two or more substances that has the same composition throughout (think: lemonade without the pulp…mmmmm). Some solutions are acids and some are bases (hint: lemonade is an acid). To understand acids and bases, you need to know more about pure water. In pure water (such as distilled water), a tiny fraction of water molecules naturally breaks down to form ions. An ion is an electrically charged atom or molecule. The breakdown of water is represented by the chemical equation

2 H2O → H3O+ + OH

The products of this reaction are a hydronium ion (H3O+) and a hydroxide ion (OH). The hydroxide ion, which has a negative charge, forms when a water molecule gives up a positively charged hydrogen ion (H+). The hydronium ion, which has positive charge, forms when another water molecule accepts the hydrogen ion. Blah blah blah, just give me some lemonade now…See what you did? You made me think of lemonade up in that other paragraph and I can’t get it out of my mind now. I blame you.

Acidity and pH

The concentration of hydronium ions in a solution is known as acidity. In pure water, the concentration of hydronium ions is very low; only about 1 in 10 million water molecules naturally breaks down to form a hydronium ion. As a result, pure water is essentially neutral. Acidity is measured on a scale called pH, as shown in Figure below. Pure water has a pH of 7, so the point of neutrality on the pH scale is 7. Hey, did you notice the graphic put lemon juice on there around the number 2? So does that mean you can clean your toilet with lemonade? Oh yes, you can (click the link to find out how).

pH scale

pH Scale. The pH scale ranges from 0 to 14, with 7 being the point of neutrality. What is the pH of lemon juice? Of milk?

Acids

If a solution has a higher concentration of hydronium ions than pure water, it has a pH lower than 7. A solution with a pH lower than 7 is called an acid. As the hydronium ion concentration increases, the pH value decreases. Therefore, the more acidic a solution is, the lower its pH value is. Did you ever taste vinegar? Like other acids, it tastes sour (OOOH I know! Like lemonade!). Stronger acids can be harmful to organisms. For example, stomach acid would eat through the stomach if it were not lined with a layer of mucus. Strong acids can also damage materials, even hard materials such as glass.

Bases

If a solution has a lower concentration of hydronium ions than pure water, it has a pH higher than 7. A solution with a pH higher than 7 is called a base. Bases, such as baking soda, have a bitter taste. Like strong acids, strong bases can harm organisms and damage materials. For example, lye can burn the skin, and bleach can remove the color from clothing.

Acids, Bases, and pH (Bozeman Science)

 

Check out this video that shows just how strong acids AND bases can be on each end of the pH scale. See what Sodium Hydroxide (NaOH) and Hydrochloric Acid (HCl) do to two separate Coke cans!

Coke Cans in Acid and Base – Periodic Table of Videos

Watch this video that shows an acid and a base that are mixed together. What do you think will happen?

Mr. Glane Chemistry Demo: Acid Base reaction:

Acids and Bases in Organisms

Acids and bases are important in living things because most enzymes can do their job only at a certain level of acidity. Cells secrete acids and bases to maintain the proper pH for enzymes to work. For example, every time you digest food, acids and bases are at work in your digestive system. Consider the enzyme pepsin, which helps break down proteins in the stomach. Pepsin needs an acidic environment to do its job, and the stomach secretes a strong acid that allows pepsin to work. However, when stomach contents enter the small intestine, the acid must be neutralized. This is because enzymes in the small intestine need a basic environment in order to work. An organ called the pancreas secretes a strong base into the small intestine, and this base neutralizes the acid.

Don’t think for two seconds that I forgot about that lemonade you owe me just because we are in some other section of the text now!

Water and Life

The human body is about 70% water (not counting the water in body fat, which varies from person to person – Yeah don’t ask how much I have, lol – I think my percentage might be a little higher). The body needs all this water to function normally. Just why is so much water required by human beings and other organisms? Water can dissolve many substances that organisms need, and it is necessary for many biochemical reactions. The examples below are among the most important biochemical processes that occur in living things, but they are just two of many ways that water is involved in biochemical reactions.

  • Photosynthesis—In this process, cells use the energy in sunlight to change carbon dioxide and water to glucose and oxygen. The reactions of photosynthesis can be represented by the chemical equation

6CO2 + 6H2O + Energy → C6H12O6 + 6O2

  • Cellular respiration—In this process, cells break down glucose in the presence of oxygen and release carbon dioxide, water, and energy. The reactions of cellular respiration can be represented by the chemical equation

C6H12O6 + 6O2 → 6CO2 + 6H2O + Energy

Water is involved in many other biochemical reactions. As a result, just about all life processes depend on water. Clearly, life as we know it could not exist without water. OR LEMONADE!!!!!!!!!!!!!!!!!!!!!!!! 😉

Lesson Summary

  • Most of Earth’s water is salt water in the oceans. Less than 3% is freshwater.
  • Water molecules are polar, so they form hydrogen bonds. This gives water unique properties, such as a relatively high boiling point.
  • The extremely low hydronium ion concentration of pure water gives pure water a neutral pH of 7. Acids have a pH lower than 7, and bases have a pH higher than 7.
  • Water is involved in most biochemical reactions. Therefore, water is essential to life.

Lesson Review Questions

Recall

1. Where is most of Earth’s water found?

2. What is polarity? Describe the polarity of water.

3. What is the pH of a neutral solution?

4. Describe an example of an acid or a base that is involved in human digestion.

Apply Concepts

5. Assume that you test an unknown solution and find that it has a pH of 7.2. What type of solution is it? How do you know?

6. How could you demonstrate to a child that solid water is less dense than liquid water?

Think Critically

7. Explain how water’s polarity is related to its boiling point.

8. Explain why metabolism in organisms depends on water.

Points to Consider

Most biochemical reactions take place within cells. Cells are the microscopic building blocks of organisms.

  • What do you think you would see if you could look inside the cell of an organism? What structures do you think you might observe?
  • What biochemical processes might be occurring?

Opening image created by CK-12 Foundation from 1hkx.pdb (http://www.rcsb.org/pdb/explore/explore.do?structureId=1hkx) using UCSF Chimera (http://www.cgl.ucsf.edu/chimera). CC-BY-NC-SA 3.0.

For Table above, from top to bottom:

Previous: Biochemical Reactions

Next: Chapter 3: Cellular Structure and Function

8 thoughts on “2.3 Water, Acids, and Bases

  1. I was just looking at this acids and bases lesson as research for the possibility of using this with my student. The first link, animated video of hydrogen bonding forces, didn’t take me to a video. It was a website called class zone,it asked for my location and then just kept giving me more and more choices, none of which seemed to lead to an animated video. Just an FYI.

    • You may be running into an issue because you have to enable Adobe Flash. If possible, use the Chrome browser, when the page comes up, click on California. It will take you to the page where the video is, but it won’t load (if you are viewing it in Chrome). Instead, it will show a puzzle piece icon and it should say “Click to enable Adobe Flash.” Once you click that a popup will come up at the top left of the browser. It will say “http://www.classzone.com wants to run Flash”. Click the allow button. Hopefully, that will work for you! 🙂 I’ll put a note in the text what I just typed here in case others run into that issue. Thank you so much for leaving a comment! Comments like yours really help keep the online textbook up-to-date for everyone when a link isn’t working. 🙂

Leave a Reply