3.2 Cell Structures


  • Describe the structure and function of the plasma membrane.
  • Identify the roles of the cytoplasm and cytoskeleton.
  • Outline the form and function of the nucleus and other organelles.
  • List special structures of plant cells, and state what they do.
  • Explain how cells are organized in living things.


Chapter 3.2 workbook pages


  • ATP (adenosine triphosphate)
    • energy-carrying molecule that cells use to power their metabolic processes
  • cell wall
    • rigid layer that surrounds the plasma membrane of a plant cell and helps support and protect the cell
  • central vacuole
    • large saclike organelle in plant cells that stores substances such as water and helps keep plant tissues rigid
  • chloroplast
    • organelle in the cells of plants and algae where photosynthesis takes place
  • cytoskeleton
    • structure of filaments and tubules in the cytoplasm that provides a cell with an internal framework
  • endoplasmic reticulum
    • organelle in eukaryotic cells that helps make and transport proteins
  • Golgi apparatus
    • organelle in eukaryotic cells that processes proteins and prepares them for use both inside and outside the cell
  • mitochondria
    • organelle in eukaryotic cells that makes energy available to the cell in the form of ATP molecules
  • phospholipid bilayer
    • double layer of phospholipid molecules that makes up a plasma membrane
  • vacuole
    • large saclike organelle that stores and transports materials inside a cell
  • vesicle
    • small saclike organelle that stores and transports materials inside a cell


Your body is made up of trillions of cells, but all of them perform the same basic life functions. They all obtain and use energy, respond to the environment, and reproduce. How do your cells carry out these basic functions and keep themselves—and you—alive? To answer these questions, you need to know more about the structures that make up cells.

A Tour of the Cell (Bozeman Science):


In some ways, a cell resembles a plastic bag full of Jell-O. Its basic structure is a plasma membrane filled with cytoplasm. Like Jell-O containing mixed fruit, the cytoplasm of the cell also contains various structures, such as a nucleus and other organelles. Figure below shows the structures inside a typical eukaryotic cell, in this case the cell of an animal. Refer to the figure as you read about the structures below. You can also explore the structures of an interactive animal cell at this link: http://www.cellsalive.com/cells/cell_model.htm.


Animal Cell. This animal cell consists of cytoplasm enclosed within a plasma membrane. The cytoplasm contains many different organelles.


The plasma membrane forms a barrier between the cytoplasm inside the cell and the environment outside the cell. It protects and supports the cell and also controls everything that enters and leaves the cell. It works sort of like an international border. Only some things may enter the country (cell). The customs officials that choose what can and cannot come in are proteins. The plasma membrane allows only certain substances to pass through, while keeping others in or out. The ability to allow only certain molecules in or out of the cell is referred to as selective permeability or semipermeability. To understand how the plasma membrane controls what crosses into or out of the cell, you need to know its composition.

The plasma membrane is discussed at http://www.youtube.com/watch?v=-aSfoB8Cmic (6:16). The cell wall (see below) is also discussed in this video.

The Phospholipid Bilayer


The plasma membrane is composed mainly of phospholipids, which consist of fatty acids and alcohol. The phospholipids in the plasma membrane are arranged in two layers, called a phospholipid bilayer. As shown in Figure below (skip past the two root word alerts to see it), each phospholipid molecule has a head and two tails. The head “loves” water (hydrophilic),


and the tails “hate” water (hydrophobic).


The water-hating tails are on the interior of the membrane, whereas the water-loving heads point outwards, toward either the cytoplasm or the fluid that surrounds the cell. Molecules that are hydrophobic can easily pass through the plasma membrane, if they are small enough, because they are water-hating like the interior of the membrane. Molecules that are hydrophilic, on the other hand, cannot pass through the plasma membrane—at least not without help—because they are water-loving like the exterior of the membrane.


Phospholipid Bilayer. The phospholipid bilayer consists of two layers of phospholipids (left), with a hydrophobic, or water-hating, interior and a hydrophilic, or water-loving, exterior. A single phospholipid molecule is depicted on the right.

Other Molecules in the Plasma Membrane

The plasma membrane also contains other molecules, primarily other lipids and proteins. The green molecules in Figure above, for example, are the lipid cholesterol. Molecules of cholesterol help the plasma membrane keep its shape. Many of the proteins in the plasma membrane assist other substances in crossing the membrane.


Extensions of the Plasma Membrane

The plasma membrane may have extensions, such as whip-like flagella or brush-like cilia. In single-celled organisms, like those shown in Figure below, the membrane extensions may help the organisms move. In multicellular organisms, the extensions have other functions. For example, the cilia on human lung cells sweep foreign particles and mucus toward the mouth and nose.


Flagella (left) and cilia (right). Flagella and cilia are extensions of the plasma membrane of many cells.

The Cell Membrane (Bozeman Science):


The cytoplasm consists of everything inside the plasma membrane of the cell. It includes the watery, gel-like material called cytosol, as well as various structures. The water in the cytoplasm makes up about two thirds of the cell’s weight and gives the cell many of its properties.

Functions of the Cytoplasm

The cytoplasm has several important functions, including

  1. suspending cell organelles
  2. pushing against the plasma membrane to help the cell keep its shape
  3. providing a site for many of the biochemical reactions of the cell


Crisscrossing the cytoplasm is a structure called the cytoskeleton, which consists of thread-like filaments and tubules. You can see these filaments and tubules in the cells in Figure below. As its name suggests, the cytoskeleton is like a cellular “skeleton.” It helps the cell maintain its shape and also holds cell organelles in place within the cytoplasm.


Cytoskeleton. The cytoskeleton gives the cell an internal structure, like the frame of a house. In this photograph, filaments and tubules of the cytoskeleton are green and red, respectively. The blue dots are cell nuclei.

The cytoskeleton is discussed in the following video http://www.youtube.com/watch?v=5rqbmLiSkpk (4:50).


Eukaryotic cells contain a nucleus and several other types of organelles. These structures are involved in many vital cell functions.

The Nucleus

The nucleus is the largest organelle in a eukaryotic cell and is often considered to be the cell’s control center. This is because the nucleus controls which proteins the cell makes. The nucleus of a eukaryotic cell contains most of the cell’s DNA, which makes up chromosomes and is encoded with genetic instructions for making proteins.



The mitochondrion (plural, mitochondria) is an organelle that makes energy available to the cell. This is why mitochondria are sometimes referred to as the power plants of the cell. They use energy from organic compounds such as glucose to make molecules of ATP (adenosine triphosphate), an energy-carrying molecule that is used almost universally inside cells for energy.

Endoplasmic Reticulum

The endoplasmic reticulum (ER) is an organelle that helps make and transport proteins and lipids. There are two types of endoplasmic reticulum: rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum (SER). Both types are shown in Figure below.

  • RER looks rough because it is studded with ribosomes. It provides a framework for the ribosomes, which make proteins. Bits of its membrane pinch off to form tiny sacs called vesicles, which carry proteins away from the ER.
  • SER looks smooth because it does not have ribosomes. SER also makes lipids, stores substances, and plays other roles.


Ribosomes are small organelles where proteins are made. They contain the nucleic acid RNA, which assembles and joins amino acids to make proteins. Ribosomes can be found alone or in groups within the cytoplasm as well as on the RER.

Golgi Apparatus

The Golgi apparatus is a large organelle that processes proteins and prepares them for use both inside and outside the cell. It is shown in Figure below. The Golgi apparatus is somewhat like a post office. It receives items (proteins from the ER), packages and labels them, and then sends them on to their destinations (to different parts of the cell or to the cell membrane for transport out of the cell). The Golgi apparatus is also involved in the transport of lipids around the cell. At the link below, you can watch an animation showing how the Golgi apparatus does all these jobs. http://www.johnkyrk.com/golgiAlone.html


This drawing includes the nucleus, RER, SER, and Golgi apparatus. From the drawing, you can see how all these organelles work together to make and transport proteins.

Vesicles and Vacuoles

Both vesicles and vacuoles are sac-like organelles that store and transport materials in the cell. Vesicles are much smaller than vacuoles and have a variety of functions. The vesicles that pinch off from the membranes of the ER and Golgi apparatus (see Figure above) store and transport protein and lipid molecules. Some vesicles are used as chambers for biochemical reactions. Other vesicles include:

  • Lysosomes, which use enzymes to break down foreign matter and dead cells.
  • Peroxisomes, which use oxygen to break down poisons.


Centrioles are organelles involved in cell division. They help organize the chromosomes before cell division so that each daughter cell has the correct number of chromosomes after the cell divides. Centrioles are found only in animal cells and are located near the nucleus (see Figure above).

Cellular Oranelles (Bozeman Science)


Plant cells have several structures that are not found in animal cells, including a cell wall, a large central vacuole, and organelles called plastids. You can see each of these structures in Figure below. You can also view them in an interactive plant cell at the link below. http://www.cellsalive.com/cells/cell_model.htm


Plant Cell. In addition to the organelles and other structures found inside animal cells, plant cells also have a cell wall, a large central vacuole, and plastids such as chloroplasts. Can you find each of these structures in the figure?

Cell Wall

The cell wall is a rigid layer that surrounds the plasma membrane of a plant cell. It supports and protects the cell. Tiny holes, or pores, in the cell wall allow water, nutrients, and other substances to move into and out of the cell. The cell wall is made up mainly of complex carbohydrates, including cellulose.

Central Vacuole

Most mature plant cells have a large central vacuole. This vacuole can make up as much as 90% of the cell’s volume. The central vacuole has a number of functions, including storing substances such as water, enzymes, and salts. It also helps plant tissues, such as stems and leaves, stay rigid and hold their shape. It even helps give flowers, like the ones in Figure below, their beautiful colors.


These flowers are red because of red pigment molecules in the central vacuoles of their cells. The bright colors are an important feature. They help the flowers attract pollinators such as hummingbirds so the plants can reproduce.


Plastids are organelles in plant cells that carry out a variety of different functions. The main types of plastids and their functions are described below.

  • Chloroplasts are plastids that contain the green pigment chlorophyll. They capture light energy from the sun and use it to make food. A chloroplast is shown in Figure above.
  • Chromoplasts are plastids that make and store other pigments. The red pigment that colors the flower petals in Figure above was made by chromoplasts.
  • Leucoplasts are plastids that store substances such as starch or make small molecules such as amino acids.

Like mitochondria, plastids contain their own DNA.

Organization of Cells

Cells can exist as individual cells or as groups of cells. Cells in groups can be organized at several levels.

From One Cell to Many

The simplest level of cell organization is a single-celled organism, and the most complex level is a multicellular organism. In between these two levels are biofilms and colonies.

  • A single-celled organism floats freely and lives independently. Its single cell is able to carry out all the processes of life without any help from other cells.
  • A biofilm is a thin layer of bacteria that sticks to a surface. Cells in a biofilm are all alike, but they may play different roles, such as taking in nutrients or making the “glue” that sticks the biofilm to the surface. The sticky plaque that forms on teeth is a biofilm of bacterial cells.
  • Some single-celled organisms, such as algae, live in colonies. A colony is an organized structure composed of many cells, like the Volvox sphere in Figure below. Volvox are algae that live in colonies of hundreds of cells. All of the cells in the colony live and work cooperatively. For example, they can coordinate the movement of their flagella, allowing them to swim together through the water as though they were part of a single organism.
  • A multicellular organism consists of many cells and has different types of cells that are specialized for various functions. All the cells work together and depend on each other to carry out the life processes of the organism. Individual cells are unable to survive on their own.

Volvox Colony. Volvox cells live in a colony shaped like a hollow ball. The cells of the colony may be connected by strands of cytoplasm and can function together. For example, the whole colony can swim from one place to another as one.

Levels of Organization in Multicellular Organisms

There are multicellular organisms at all levels of organization, from the simplest, cell level of organization to the most complex, organ-system level of organization. Consider these examples:

  • Sponges have cell-level organization, in which different cells are specialized for different functions, but each cell works alone. For example, some cells digest food, while other cells let water pass through the sponge.
  • Jellyfish have tissue-level organization, in which groups of cells of the same kind that do the same job form tissues. For example, jellyfish have some tissues that digest food and other tissues that sense the environment.
  • Roundworms have organ-level organization, in which two or more types of tissues work together to perform a particular function as an organ. For example, a roundworm has a primitive brain that controls how the organism responds to the environment.
  • Human beings have organ system-level organization, in which groups of organs work together to do a certain job, with each organ doing part of the overall task. An example is the human digestive system. Each digestive system organ—from the mouth to the small intestine—does part of the overall task of breaking down food and absorbing nutrients.


  • The plasma membrane is a phospholipid bilayer that supports and protects a cell and controls what enters and leaves it.
  • The cytoplasm consists of everything inside the plasma membrane, including watery cytosol and organelles. The cytoplasm suspends the organelles and does other jobs. The cytoskeleton crisscrosses the cytoplasm and gives the cell an internal framework.
  • The nucleus is the largest organelle in a eukaryotic cell and contains most of the cell’s DNA. Other organelles in eukaryotic cells include the mitochondria, endoplasmic reticulum, ribosomes, Golgi apparatus, vesicles, vacuoles, and centrioles (in animal cells only). Each type of organelle has important functions in the cell.
  • Plant cells have special structures that are not found in animal cells, including a cell wall, a large central vacuole, and organelles called plastids.
  • Cells can exist independently as single-celled organisms or with other cells as multicellular organisms. Cells of a multicellular organism can be organized at the level of cells, tissues, organs, and organ systems.



1. Describe the composition of the plasma membrane.

2. List functions of the cytoplasm and cytoskeleton.

3. What is the role of the nucleus of a eukaryotic cell?

4. List three structures that are found in plant cells but not in animal cells.

5. Outline the levels of organization of cells in living things, starting with the simplest level, that of single-celled organisms.

Apply Concepts

6. Create a diagram to show how the cells of multicellular organisms may be organized at different levels, from the level of the cell to the level of the organ system. Give an example of a multicellular organism at each level of organization.

Think Critically

7. Explain why hydrophobic (“water-hating”) molecules can easily cross the plasma membrane, while hydrophilic (“water-loving”) molecules cannot.

8. Explain how the following organelles ensure that a cell has the proteins it needs: nucleus, rough and smooth ER, vesicles, and Golgi apparatus.


Cells carry out all the functions of life, and they use nutrients and oxygen and produce wastes. These substances must cross the plasma membrane.

  • How do you think substances cross the plasma membrane to enter or leave the cell? Does the membrane have tiny holes in it like a sieve?
  • What if the substances are large? Protein molecules, for example, are very large. How do they enter or leave the cell?

Previous: Introduction to Cells

Next: Cell Transport and Homeostasis

Leave a Reply