Lesson Objectives
- Describe a general plant life cycle.
- Outline the life cycle of nonvascular plants.
- Describe the life cycle of seedless vascular plants.
- Summarize the gymnosperm life cycle.
- Describe the angiosperm life cycle.
WORKBOOK ASSIGNMENT:
Chapter 16.3 workbook pages
Get the workbook here: https://guesthollow.com/store/free-high-school-biology-workbook/
Vocabulary
- antheridia (singular, antheridium)
- male reproductive organs of the gametophyte generation of plants that produce motile sperm
- archegonia (singular, archegonium)
- female reproductive organs of the gametophyte generation of plants that produce eggs
- sporangium (plural, sporangia)
- structure on a plant of the sporophyte generation that produces spores for asexual reproduction
Introduction
The life cycle of all plants is complex because it is characterized by alternation of generations. Plants alternate between diploid sporophyte and haploid gametophyte generations, and between sexual and asexual reproduction. The ability to reproduce both sexually and asexually gives plants the flexibility to adapt to changing environments. Their complex life cycle allows for great variation.
General Plant Life Cycle
A general plant life cycle is represented by the diagram in Figure below. From the figure, you can see that the diploid sporophyte has a structure called a sporangium (plural, sporangia) that undergoes meiosis to form haploid spores. A spore develops into a haploid gametophyte. The gametophyte has male or female reproductive organs that undergo mitosis to form haploid gametes (sperm or eggs). Fertilization of gametes produces a diploid zygote. The zygote grows and develops into a mature sporophyte, and the cycle repeats.
One of the two generations of a plant’s life cycle is typically dominant to the other generation. Whether it’s the sporophyte or gametophyte generation, individuals in the dominant generation live longer and grow larger. They are the green, photosynthetic structures that you would recognize as a fern, tree, or other plant (see Figure below). Individuals in the nondominant generation, in contrast, may be very small and rarely seen. They may live in or on the dominant plant.
The dominant generation in nonvascular plants is the gametophyte; in vascular plants, it’s the sporophyte. Why is a dominant sporophyte generation an advantage on land?
Life Cycle of Nonvascular Plants
Nonvascular plants include mosses, liverworts, and hornworts. They are the only plants with a life cycle in which the gametophyte generation is dominant. Figure below shows the life cycle of moss. The familiar, green, photosynthetic moss plants are gametophytes. The sporophyte generation is very small and dependent on the gametophyte plant.
The gametophytes of nonvascular plants have distinct male or female reproductive organs (see Figure below). Male reproductive organs, called antheridia (singular, antheridium), produce motile sperm with two flagella. Female reproductive organs, called archegonia (singular, archegonium), produce eggs.
In order for fertilization to occur, sperm must swim in a drop of water from an antheridium to an egg in an archegonium. If fertilization takes place, it results in a zygote that develops into a tiny sporophyte on the parent gametophyte plant. The sporophyte produces haploid spores, and these develop into the next generation of gametophyte plants. Then the cycle repeats.
Life Cycle of a Moss
Life Cycle of Seedless Vascular Plants
Unlike nonvascular plants, all vascular plants—including seedless vascular plants—have a dominant sporophyte generation. Seedless vascular plants include clubmosses and ferns. Figure below shows a typical fern life cycle.
A mature sporophyte fern has the familiar leafy fronds. The undersides of the leaves are dotted with clusters of sporangia. Sporangia produce spores that develop into tiny, heart-shaped gametophytes. Gametophytes have antheridia and archegonia. Antheridia produce sperm with many cilia; archegonia produce eggs. Fertilization occurs when sperm swim to an egg inside an archegonium. The resulting zygote develops into an embryo that becomes a new sporophyte plant. Then the cycle repeats.
Life Cycle of Gymnosperms
Gymnosperms are vascular plants that produce seeds in cones. Examples include conifers such as pine and spruce trees. The gymnosperm life cycle has a very dominant sporophyte generation. Both gametophytes and the next generation’s new sporophytes develop on the sporophyte parent plant. Figure below is a diagram of a gymnosperm life cycle.
Cones form on a mature sporophyte plant. Inside male cones, male spores develop into male gametophytes. Each male gametophyte consists of several cells enclosed within a grain of pollen. Inside female cones, female spores develop into female gametophytes. Each female gametophyte produces an egg inside an ovule.
Pollination occurs when pollen is transferred from a male to female cone. If sperm then travel from the pollen to an egg so fertilization can occur, a diploid zygote results. The zygote develops into an embryo within a seed, which forms from the ovule inside the female cone. If the seed germinates, it may grow into a mature sporophyte tree, which repeats the cycle.
Reproductive Cycle of Pines / The Amazing Lives of Plants (15 min.)
Life Cycle of Angiosperms
Angiosperms, or flowering plants, are the most abundant and diverse plants on Earth. Like all vascular plants, their life cycle is dominated by the sporophyte generation. A typical angiosperm life cycle is shown in Figure below.
The flower in Figure above is obviously an innovation in the angiosperm life cycle. Flowers form on the dominant sporophyte plant. They consist of highly specialized male and female reproductive organs. Flowers produce spores that develop into gametophytes. Male gametophytes consist of just a few cells within a pollen grain and produce sperm. Female gametophytes produce eggs inside the ovaries of flowers. Flowers also attract animal pollinators.
If pollination and fertilization occur, a diploid zygote forms within an ovule in the ovary. The zygote develops into an embryo inside a seed, which forms from the ovule and also contains food to nourish the embryo. The ovary surrounding the seed may develop into a fruit. Fruits attract animals that may disperse the seeds they contain. If a seed germinates, it may grow into a mature sporophyte plant and repeat the cycle.
Plant Reproduction in Angiosperms
The Amazing Lives of Plants: Reproductive Cycle of Flower Plants video:
Lesson Summary
- All plants have a life cycle with alternation of generations. Plants alternate between diploid sporophyte and haploid gametophyte generations, and between sexual reproduction with gametes and asexual reproduction with spores.
- In nonvascular plants, the gametophyte generation is dominant. The tiny sporophyte grows on the gametophyte plant.
- In vascular plants, the sporophyte generation is dominant. In seedless vascular plants such as ferns, the sporophyte releases spores from the undersides of leaves. The spores develop into tiny, separate gametophytes, from which the next generation of sporophyte plants grows.
- In seed plants, the gametophyte generation takes place in a cone or flower, which forms on the mature sporophyte plant. Each male gametophyte is just a few cells inside a grain of pollen. Each female gametophyte produces an egg inside an ovule. Pollination must occur for fertilization to take place. Zygotes develop into embryos inside seeds, from which the next sporophyte generation grows.
Lesson Review Questions
Recall
1. Outline the general life cycle of plants.
2. What are sporangia? What do they do?
3. Describe antheridia and archegonia and their functions.
4. What role do leaves play in the reproduction of ferns?
5. Describe how gymnosperms use cones to reproduce.
6. State the functions of flowers and fruits in angiosperm reproduction.
Apply Concepts
7. Create your own cycle diagram to represent the life cycle of a daisy.
Think Critically
8. Relate the concept of alternation of generations to the ability of plants to adapt to a diversity of habitats.
9. Compare and contrast gymnosperm and angiosperm life cycles.
Previous: Plant Organs, Roots, Stems, and Leaves
Next: Plant Features and Responses
CK-12 Foundation is licensed under Creative Commons AttributionNonCommercial 3.0 Unported (CC BY-NC 3.0)”
• Terms of Use • Attribution
Good Morning. God bless you. I want to inform you that the answer key for the exercise of True or False, in section 16.3, is not included. They are 15 exercises. Thank you!
Thank you SO much for letting us know that those answers are missing!! I will upload a new answer key with the answers on 3/29. Please don’t hesitate to let us know if you run into any other errors or issues! 🙂
Where’s all the Ameoba Sisters videos??
Sadly they don’t have videos on every topic…but maybe they will make some more I can add! 🙂
Ok, thanks!
Sadly they don’t have videos on every topic…but maybe they will make some more I can add! 🙂
The life cycle of moss video has been removed.
Thank you!! 🙂
The life cycle of moss video has been removed.